100K 深度學習機 - 3C
By Lucy
at 2017-04-19T23:43
at 2017-04-19T23:43
Table of Contents
最近深度學習 (Deep Learning) 還蠻紅的
紅到什麼程度呢 ? 讓 NVIDIA CEO 老黃都自稱 NVIDIA 是 AI Computing Company
NV兩年內股價漲 5 倍 GTC 大會整場都在宣傳 AI / Deep Learning
有興趣可以看老黃 GTC 大會演講
https://www.youtube.com/watch?v=FPM3nmlaN00
剛好小弟苦命研究生 論文是做這個題目
無奈 Server GPU 大家都要用 很難搶到運算資源
於是乾脆自己組一台 PC 來跑
分享一下自己目前組的這台機器 供大家參考
--
CPU intel i7-7700K 10,800
MB ASUS Z270-AR 4,690
RAM 美光 DDR4-2400 16G ----- x4 12,000
GPU MSI 1080Ti Sea Hawk X --- x2 50,000
SSD 美光 MX300 750G SSD 6,000
HDD Toshiba 2TB 2,000
PSU Leadex 1000W 白金 5,000
CASE Corsair Carbide 400R 2,500
LCD LG 29UM57 7,500
KB Filco 忍者 茶軸 + PBT 鍵帽 5,000
MOUSE 羅技 G402 1,000
----------------------------------- Total ~ 100,000
-- 同場加映 如果只有4~6萬預算 建議的配備
CPU intel i5-7500 6,400
intel i7-7700K (+5,000)
MB B250系列 自選 3,000
RAM DDR4 16G*2 6,000
GPU MSI GTX1080Ti GAMING X 24,600
GTX1080 系列 自選 (-7,000)
GTX1070 系列 自選 (-10,000)
SSD MX300 525G 4,500
MX300 275G (-2,000)
HDD Toshiba 2TB 2,000
PSU 台達 650W 2,500
CASE 自選 2,000
----------------------------------- Total ~ 50,000
回正題 來看 100K 水冷的配置
外觀
http://i.imgur.com/SqQPHav.jpg
開側板
http://i.imgur.com/W03PGoq.jpg
顯卡水冷直通機頂
http://i.imgur.com/19E9XXx.jpg
從外面(上方往下看) 高級發光烘手機
http://i.imgur.com/qXpRDyb.jpg
箱子排排站
http://i.imgur.com/ufK69uR.jpg
待機 35度 (室溫28)
http://i.imgur.com/Jvf71C0.png
Furmark 燒機10分鐘 65度 水冷壓制力十分驚人
http://i.imgur.com/R9X56Zh.png
跑 deep learning (trainging) 可以看到完全把 GPU 吃滿滿
http://i.imgur.com/jMVCWRl.png
--
心得
其實之前一直沒用過水冷的,這次被店員洗腦說沒差一千塊,直上比較好。
裝上去實測確實散熱能力很好 ( 相較另一張 MSI Gaming X 80度)
整體噪音還可以接受 但還是有風扇聲 ( 因為機殼一堆洞 )
我自己裝弄了半天 零件卡來卡去 要橋很久 建議請店員裝 省事 = 3 =
備註
1. 原本直接拿海盜 RM650i 跑 兩張 GPU 同時滿載 = 斷電關機
這樣的配置 1000W 是必要的
2. 用兩張水冷 1080Ti 算是失誤買的 最好還是買公版 不然裝機弄半天 累死
要雙GPU以上的話, 千萬不要買 2.5 槽的顯卡 e.g. ASUS STRIX, MSI Gaming X.
會吸不到冷風 且對流極差
3. 如果只有單張 1080Ti 650W 應該就OK了
4. 不要買 TITAN X系列 or Server用的 GPU 除非你錢太多沒地方花
個人/實驗室用 5~20萬 1080 ~ 1080Ti SLI 這樣組 C/P 最高
5. i5 / i7 沒差多少錢 ( 相較之下 ) 建議直上 7700K
畢竟 preprocessing 還有其他東西 蠻多也需要 CPU 來算
6. RAM 可以的話也塞到 64G 比較好 像是 dataset 可以直接塞到 RAM 很爽
避免 RAM 不夠大 會切到 swap 造成 read/write 時間拉長
7. SSD 建議 500G 以上 有錢的話買個 1T PCIE SSD 更好
因為像是 image 相關的 dataset 很容易都 100G 以上
還有 train 出來的 weight 也都蠻肥的
8. 如果沒電腦的想租 AWS / GCP 雲端主機 GPU 來跑的話 建議可以放棄這條路了
雲端目前都是骨董級 GPU K80 $ 0.7 USD/hour = 500 NTD/day = 15K NTD/month
更何況 K80 比 1080TI 不知道慢幾倍
大概是這樣 小弟做這個領域一年的心得 供大家參考
--
Tags:
3C
All Comments
By Lauren
at 2017-04-22T06:13
at 2017-04-22T06:13
By Anthony
at 2017-04-24T14:31
at 2017-04-24T14:31
By Irma
at 2017-04-25T01:29
at 2017-04-25T01:29
By Skylar Davis
at 2017-04-29T03:19
at 2017-04-29T03:19
By Leila
at 2017-04-30T03:57
at 2017-04-30T03:57
By Michael
at 2017-05-04T11:22
at 2017-05-04T11:22
By Annie
at 2017-05-04T21:13
at 2017-05-04T21:13
By John
at 2017-05-06T09:31
at 2017-05-06T09:31
By John
at 2017-05-10T16:33
at 2017-05-10T16:33
By Thomas
at 2017-05-12T04:29
at 2017-05-12T04:29
By Iris
at 2017-05-16T10:37
at 2017-05-16T10:37
By Lydia
at 2017-05-19T06:24
at 2017-05-19T06:24
By Gilbert
at 2017-05-21T08:26
at 2017-05-21T08:26
By Caitlin
at 2017-05-21T10:23
at 2017-05-21T10:23
By Enid
at 2017-05-21T12:53
at 2017-05-21T12:53
By Ivy
at 2017-05-24T22:08
at 2017-05-24T22:08
By Hamiltion
at 2017-05-28T15:20
at 2017-05-28T15:20
By Bennie
at 2017-05-30T22:35
at 2017-05-30T22:35
By Mason
at 2017-06-01T22:14
at 2017-06-01T22:14
By Dora
at 2017-06-03T20:06
at 2017-06-03T20:06
By William
at 2017-06-08T18:06
at 2017-06-08T18:06
By Emma
at 2017-06-10T06:20
at 2017-06-10T06:20
By Daph Bay
at 2017-06-14T14:40
at 2017-06-14T14:40
By Odelette
at 2017-06-17T14:08
at 2017-06-17T14:08
By Tracy
at 2017-06-17T22:23
at 2017-06-17T22:23
By Lucy
at 2017-06-22T17:22
at 2017-06-22T17:22
By Queena
at 2017-06-25T09:23
at 2017-06-25T09:23
By Tristan Cohan
at 2017-06-30T03:23
at 2017-06-30T03:23
By Caitlin
at 2017-07-01T05:05
at 2017-07-01T05:05
By Connor
at 2017-07-03T18:11
at 2017-07-03T18:11
By Jacky
at 2017-07-07T03:55
at 2017-07-07T03:55
By Connor
at 2017-07-08T12:39
at 2017-07-08T12:39
By Iris
at 2017-07-13T07:42
at 2017-07-13T07:42
By Tristan Cohan
at 2017-07-15T19:02
at 2017-07-15T19:02
By Andy
at 2017-07-18T16:16
at 2017-07-18T16:16
By Frederica
at 2017-07-22T14:06
at 2017-07-22T14:06
By Frederica
at 2017-07-26T06:57
at 2017-07-26T06:57
By Thomas
at 2017-07-26T17:30
at 2017-07-26T17:30
By Necoo
at 2017-07-28T21:01
at 2017-07-28T21:01
By Barb Cronin
at 2017-07-30T13:30
at 2017-07-30T13:30
By Robert
at 2017-08-04T09:14
at 2017-08-04T09:14
By Ethan
at 2017-08-08T07:19
at 2017-08-08T07:19
By Ethan
at 2017-08-11T08:21
at 2017-08-11T08:21
By Kristin
at 2017-08-15T18:20
at 2017-08-15T18:20
By Caroline
at 2017-08-20T18:12
at 2017-08-20T18:12
By Genevieve
at 2017-08-24T21:19
at 2017-08-24T21:19
By Andy
at 2017-08-28T12:02
at 2017-08-28T12:02
By Elma
at 2017-08-30T10:54
at 2017-08-30T10:54
By Hedda
at 2017-08-31T20:09
at 2017-08-31T20:09
By David
at 2017-09-02T16:24
at 2017-09-02T16:24
By Skylar DavisLinda
at 2017-09-05T22:23
at 2017-09-05T22:23
By Jacky
at 2017-09-07T18:55
at 2017-09-07T18:55
By Franklin
at 2017-09-11T03:08
at 2017-09-11T03:08
By Hedy
at 2017-09-11T05:25
at 2017-09-11T05:25
By Megan
at 2017-09-14T17:20
at 2017-09-14T17:20
By Hamiltion
at 2017-09-17T23:19
at 2017-09-17T23:19
By Cara
at 2017-09-22T02:35
at 2017-09-22T02:35
By Edwina
at 2017-09-25T21:47
at 2017-09-25T21:47
By Lily
at 2017-09-26T18:03
at 2017-09-26T18:03
By Hazel
at 2017-09-28T18:46
at 2017-09-28T18:46
By Charlotte
at 2017-10-02T14:44
at 2017-10-02T14:44
By Hamiltion
at 2017-10-05T02:15
at 2017-10-05T02:15
Related Posts
RX 480 成功刷成 RX 580
By Hedwig
at 2017-04-19T23:16
at 2017-04-19T23:16
顯示卡的問題
By Elvira
at 2017-04-19T22:35
at 2017-04-19T22:35
NZXT Kraken X42 一體式水冷
By Regina
at 2017-04-19T22:17
at 2017-04-19T22:17
機殼跟塔散 會不會卡住.
By Charlotte
at 2017-04-19T21:36
at 2017-04-19T21:36
ROG STRIX GTX1080TI 開箱
By Anthony
at 2017-04-19T20:47
at 2017-04-19T20:47