Vega 64挖礦效率實測:打上雞血暴漲1.5倍 - 3C

By Delia
at 2017-09-04T17:24
at 2017-09-04T17:24
Table of Contents
AMD RX Vega 64挖礦效率實測:打上雞血暴漲1.5倍
http://news.mydrivers.com/1/547/547045.htm
由於計算架構設計上的優勢,AMD顯卡在計算虛擬貨幣(挖礦)上的效率明顯高得多,而根
據我們此前的測試,最新織女星架構的RX Vega系列同樣很猛,以火熱的以太坊為例,RX
Vega 64挖礦效率可達33.8MH/s,完虐N卡。
有趣的是,AMD近日還專門針對挖礦推出了一款優化驅動,可以恢復甚至再提升以太坊挖
礦效率。
那麼實際效果如何呢?WCCFtech特意用新驅動做了一次測試,發現挖礦效率竟然提升到了
43.5MH/s,而且功耗只需130W,換算下來能效就是0.33MH/s/W。
作為對比,RX Vega 64首發的時候,能效僅為0.13MH/s/W,也就是說通過優化效率猛增了
1.5倍!
不過需要注意的是,130W的功耗是通過HWiNFO測試出來的,而根據功率計的測量,平台待
機功耗為138W,滿載功耗為386W,相當於RX Vega 64在滿載下的功耗為248W (挖礦時CPU
基本不參與)。
這麼算下來,RX Vega 64的挖礦效率應該是0.175MH/s/W,依然十分可觀。
--
礦工:我要來掃貨了!!!!
PC Game 玩家:要掃快掃 慢走不送
--
http://news.mydrivers.com/1/547/547045.htm
由於計算架構設計上的優勢,AMD顯卡在計算虛擬貨幣(挖礦)上的效率明顯高得多,而根
據我們此前的測試,最新織女星架構的RX Vega系列同樣很猛,以火熱的以太坊為例,RX
Vega 64挖礦效率可達33.8MH/s,完虐N卡。
有趣的是,AMD近日還專門針對挖礦推出了一款優化驅動,可以恢復甚至再提升以太坊挖
礦效率。
那麼實際效果如何呢?WCCFtech特意用新驅動做了一次測試,發現挖礦效率竟然提升到了
43.5MH/s,而且功耗只需130W,換算下來能效就是0.33MH/s/W。
作為對比,RX Vega 64首發的時候,能效僅為0.13MH/s/W,也就是說通過優化效率猛增了
1.5倍!
不過需要注意的是,130W的功耗是通過HWiNFO測試出來的,而根據功率計的測量,平台待
機功耗為138W,滿載功耗為386W,相當於RX Vega 64在滿載下的功耗為248W (挖礦時CPU
基本不參與)。
這麼算下來,RX Vega 64的挖礦效率應該是0.175MH/s/W,依然十分可觀。
--
礦工:我要來掃貨了!!!!
PC Game 玩家:要掃快掃 慢走不送
--
Tags:
3C
All Comments

By Skylar Davis
at 2017-09-06T17:41
at 2017-09-06T17:41

By Rebecca
at 2017-09-09T23:52
at 2017-09-09T23:52

By Carol
at 2017-09-12T01:31
at 2017-09-12T01:31

By Wallis
at 2017-09-15T01:22
at 2017-09-15T01:22

By Mason
at 2017-09-15T16:27
at 2017-09-15T16:27

By Freda
at 2017-09-16T05:22
at 2017-09-16T05:22

By Aaliyah
at 2017-09-20T06:13
at 2017-09-20T06:13

By Zanna
at 2017-09-24T04:53
at 2017-09-24T04:53

By Ivy
at 2017-09-27T09:54
at 2017-09-27T09:54

By Rae
at 2017-09-28T14:09
at 2017-09-28T14:09

By Kristin
at 2017-09-30T19:35
at 2017-09-30T19:35

By Damian
at 2017-10-05T03:30
at 2017-10-05T03:30

By Delia
at 2017-10-08T01:28
at 2017-10-08T01:28

By Sandy
at 2017-10-10T04:31
at 2017-10-10T04:31

By Emily
at 2017-10-13T14:03
at 2017-10-13T14:03

By Xanthe
at 2017-10-18T04:54
at 2017-10-18T04:54

By Mason
at 2017-10-20T14:43
at 2017-10-20T14:43

By Skylar Davis
at 2017-10-24T18:07
at 2017-10-24T18:07

By Rae
at 2017-10-27T13:02
at 2017-10-27T13:02

By Andy
at 2017-10-31T18:00
at 2017-10-31T18:00

By Catherine
at 2017-11-01T07:25
at 2017-11-01T07:25

By Kama
at 2017-11-05T21:16
at 2017-11-05T21:16

By Elvira
at 2017-11-09T04:11
at 2017-11-09T04:11

By Brianna
at 2017-11-12T07:19
at 2017-11-12T07:19

By Genevieve
at 2017-11-16T22:22
at 2017-11-16T22:22

By Mia
at 2017-11-19T17:30
at 2017-11-19T17:30

By Necoo
at 2017-11-24T04:25
at 2017-11-24T04:25

By Joseph
at 2017-11-28T11:56
at 2017-11-28T11:56

By Tom
at 2017-11-30T17:16
at 2017-11-30T17:16

By Charlotte
at 2017-12-01T19:37
at 2017-12-01T19:37

By Liam
at 2017-12-05T11:20
at 2017-12-05T11:20

By Delia
at 2017-12-08T08:09
at 2017-12-08T08:09

By Todd Johnson
at 2017-12-10T12:06
at 2017-12-10T12:06

By Robert
at 2017-12-15T04:45
at 2017-12-15T04:45

By Zenobia
at 2017-12-15T16:39
at 2017-12-15T16:39

By Jacob
at 2017-12-19T20:22
at 2017-12-19T20:22

By Dorothy
at 2017-12-22T23:22
at 2017-12-22T23:22
Related Posts
顯示卡風扇

By Audriana
at 2017-09-04T17:07
at 2017-09-04T17:07
25k-30k 主文書,副剪片修圖用

By Belly
at 2017-09-04T16:16
at 2017-09-04T16:16
資工系新鮮人/自組桌電

By Lucy
at 2017-09-04T15:55
at 2017-09-04T15:55
開台r7 1700與7700k

By Elvira
at 2017-09-04T15:25
at 2017-09-04T15:25
50k 2D繪圖及文書使用

By Kyle
at 2017-09-04T15:14
at 2017-09-04T15:14